
Convexification and Concavification for a General

Class of Global Optimization Problems

Z.Y. WU1;2, F.S. BAI3 and L.S. ZHANG2

1Department of Mathematics and Computer Science, Chongqing Normal University,

Chongqing 400047 (e-mail: zhiyouwu@263.net)
2Department of Mathematics, Shanghai University, Baoshan, Shanghai 200436, P.R. China
3Institute of Mathematics, Fudan University, Shanghai 200433, P.R. China
(e-mail: fsbai@fundan.edu.cn)

(Received 18 December 2001; accepted in revised form 13 February 2004)

Abstract. A kind of general convexification and concavification methods is proposed for
solving some classes of global optimization problems with certain monotone properties. It is
shown that these minimization problems can be transformed into equivalent concave mini-

mization problem or reverse convex programming problem or canonical D.C. programming
problem by using the proposed convexification and concavification schemes. The existing
algorithms then can be used to find the global solutions of the transformed problems.
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1. Introduction

We consider global optimization problems of the following form:

min fðxÞ
s.t. giðxÞObi; i ¼ 1; . . . ;m

x 2 X; (1.1)

where f : Rn ! R and gi : Rn ! R; i ¼ 1; 2; . . . ;m, are continuous functions
satisfying certain monotone properties. Many practical global optimization
problems possess monotone properties, such as the constraints reliability
optimization problems, etc.
The problem (1.1) may have multiple local optimal solutions since fðxÞ

and gis are not necessarily convex. Therefore, the standard optimization
techniques fail by the existence of local minima that are not global. Due to
the monotonicity of f and gis, the optimal solution of (1.1) always lies on
the boundary of the feasible region. Therefore, problem (1.1) is essentially
a global optimization problem.
In recent years, a rapidly growing number of deterministic methods has

been published for solving specific classes of multi-extremal global optimi-
zation problems, in particular, concave minimization, D.C. programming
and reverse convex programming (see, e.g., [1–3, 9, 11]).
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The main purpose of this paper is to present a kind of general convexifi-
cation, concavification transformation methods to convert problem (1.1)
into an equivalent structured problem, such as a concave minimization
problem or a reverse convex minimization problem or a canonical D.C.
programming problem. Then we can obtain the global solution of problem
(1.1) by using the existing algorithms in [4] and [11]. Convexification solu-
tion schemes have been recently adopted successfully in some other sub-
jects of optimization, such as in convexifying the perturbation function and
Lagrangian function in the dual search methods for nonlinear program-
ming (see, e.g., [5, 8]) and in convexifying the noninferior frontier in multi-
objective optimization (see [6]). A special convexification (concavification)
transformation for monotone function was developed in [7], and a class of
convexification transformation for monotone function was proposed in
[10]. However, the restrictive conditions under which the transformation
can be successfully done limit the choice range of such transformation.
This paper devotes to present a more general transformation including the
above two as the special cases.
The paper is organized as follows. In Section 2, we state a basic theorem

to transform the strictly monotone function into a convex(concave) one,
and several corollaries. In Section 3, the convexification (concavification)
transformation is applied to the functions in problem (1.1) in order to
obtain an equivalent problem, such as concave minimization problem,
reverse convex programming problem, or D.C. programming problem. By
using the existing algorithms in [4] and [11], the successful search for a glo-
bal optimal solution can be guaranteed. In Section 4, one illustrative exam-
ple is presented to show how a problem with certain monotone properties
can be transformed into an equivalent concave minimization problem.

2. Convexification (Concavification) of Monotone Functions

DEFINITION 2.1. We say that a function h : Rn ! R is increasing
(decreasing) on D � Rn with respect to xi if

hðx1; . . . ;xi�1;x
1
i ; xiþ1; . . . ; xnÞOðPÞ hðx1; . . . ; xi�1; x

2
i ;xiþ1; . . . ; xnÞ

for x1i < x2i ; a function h : Rn ! R is strictly increasing(decreasing) on
D � Rn with respect to xi if

hðx1; . . . ;xi�1;x
1
i ; xiþ1; . . . ; xnÞ < ð>Þ hðx1; . . . ; xi�1; x

2
i ;xiþ1; . . . ; xnÞ

for x1i < x2i , where x1i ; x
2
i 2 Di ¼ fxijðx1; . . . ; xi�1;xi;xiþ1; . . . ; xnÞ 2 Dg.

DEFINITION 2.2. We say that a function hðxÞ : Rn ! R is increasing
(decreasing) if for any x; y 2 D with xiOyi for i ¼ 1; . . . ; n, it holds
hðxÞOðPÞ hðyÞ; a function hðxÞ is strictly increasing (decreasing) if for any
x; y 2 D with xiOyi for i ¼ 1; . . . ; n and x 6¼ y it holds hðxÞ < ð>ÞhðyÞ.
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DEFINITION 2.3. If the functions fðxÞ and giðxÞ; i ¼ 1; . . . ;m, in problem
(1.1) are all monotone (strictly monotone), then the problem (1.1) is called
monotone programming (strictly monotone programming) problem.

DEFINITION 2.4. A real-valued function f defined on a convex set X � Rn

is called D.C. on X if, for all x 2 X; f can be expressed in the form
fðxÞ ¼ pðxÞ � qðxÞ

where p and q are convex functions on X.

DEFINITION 2.5. A global optimization problem is called a concave min-
imization problem if it has the form (1.1), where X is a closed convex subset
of Rn and the function f is a concave function and all functions, gis, are
convex functions.

DEFINITION 2.6. A global optimization problem is called a reverse convex
programming problem if it has the form (1.1), where X is a closed convex
subset of Rn and the function f is a convex function and all functions, gis, are
concave functions.

DEFINITION 2.7. A global optimization problem is called a D.C. pro-
gramming problem or a D.C. program if it has the form (1.1), where X is a
closed convex subset of Rn and all functions f and gi are D.C. on X.

DEFINITION 2.8. A global optimization problem is called a canonical D.C.
programming problem if it has the form (1.1), where X is a closed convex
subset of Rn and the function f is a convex function, some of the functions,
gis, are convex and the other gis are concave.

Denote ðyp1; y
p
2; . . . ; ypnÞ by yp; ðlnðlþ y

p
1Þ; lnð1þ y

p
2Þ; . . . ; lnð1þ ypnÞÞ by

lnð1þ ypÞ, where yi > 0; i ¼ 1; . . . ;m.
Throughout the paper, we set

yOx, yiOxi; i ¼ 1; . . . ; n;

y < x, yiOxi; i ¼ 1; . . . ; n and y 6¼ x:

Consider the following transformation of function hðxÞ:
hpðyÞ ¼ hðtpðyÞÞ (2.1)

where p > 0 is a parameter, tpðyÞ : Rn ! Rn is a separable mapping, i.e.,
tpðyÞ ¼ ðt1;pðy1Þ; t2;pðy2Þ; . . . ; tn;pðynÞÞ for y ¼ ðy1; . . . ; ynÞ. We further sup-
pose that ti;pðyiÞ is a 1-1 mapping. The domain of hpðyÞ is

Yp ¼ y 2 Rnjyi ¼ t�1i;p ðxiÞ; ðx1; . . . ; xnÞ 2 X
n o

(2:2Þ

Let X be an open set satisfying Yp � X for all p > 0,
Xi ¼ fyi 2 Rjðy1; . . . ; yi; . . . ; ynÞ 2 Xg
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THEOREM 2.1. Suppose that

i(i) h 2 C2ðXÞ; ti;p 2 C2ðXiÞ; i ¼ 1; . . . ; n;
(ii) there exists I � f1; . . . ; ng such that hðxÞ is strictly increasing on X

with respect to any xi; i 2 I and further satisfies

ohðxÞ
oxi

Pg0; 8x 2 X; 8i 2 I; (2:3Þ

where g0 > 0 is a constant; hðxÞ is strictly decreasing on X with respect to
any xi; i 2 I ¼ f1; . . . ; ng\I, and further satisfies

ohðxÞ
oxi

O� f0; 8x 2 X; 8i 2 I; (2:4Þ

where f0 > 0 is a constant.

(iii) ti;p; i ¼ 1; . . . ; n are strictly monotone functions on Xi satisfying:

t0i;pðyiÞ 6¼ 0 8yi 2 Xi; 8i 2 f1; . . . ; ng ð2:5Þ
t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
! þ1ðp! þ1Þ; 8x 2 X; 8i 2 I (2:6Þ

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
! �1ðp! þ1Þ; 8x 2 X; 8i 2 I (2:7Þ

(iv) X is a compact set.

Then there exists a finite p0 > 0 such that hpðyÞ is a convex function on
any convex subset of Yp when p > p0.

Proof. Let x ¼ tpðyÞ;8 2 Yp. By (2.1), we have

ohpðyÞ
oyk

¼ ohðxÞ
oxk

t0k;pðykÞ;

o2hpðyÞ
oy2k

¼ o2hðxÞ
ox2k

½t0k;pðykÞ�
2 þ ohðxÞ

oxk
t00k;pðykÞ

¼ ½t0k;pðykÞ�
2 o2hðxÞ

ox2k
þ ohðxÞ

oxk

t00k;pðykÞ
½t0k;pðykÞ�

2

" #
:

When k 6¼ j,

o2hpðyÞ
oykoyj

¼ o2hðxÞ
oxkoxj

t0k;pðykÞt0j;pðyjÞ:

Let

AðxÞ ¼ diagðt01;pðy1Þ; t02;pðy2Þ; . . . ; t0n;pðynÞÞ; (2.8)
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BðxÞ ¼ diag
ohðxÞ
ox1

t001;pðy1Þ
½t01;pðy1Þ�

2
;
ohðxÞ
ox2

t002;pðy2Þ
½t02;pðy2Þ�

2
; . . . ;

ohðxÞ
oxn

t00n;pðynÞ
½t0n;pðynÞ�

2

 !
: (2:9Þ

Denote the Hessian of hðxÞ and hpðyÞ by HðxÞ and HpðyÞ, respectively.
Then

HpðyÞ ¼ AðxÞ½HðxÞ þ BðxÞ�AðxÞ:
Let Sn be the unit sphere in Rn. For all d 2 Sn,

dTHpðyÞd ¼ dTAðxÞ½HðxÞ þ BðxÞ�AðxÞd: (2:10Þ
Combining (2.5) and (2.8), we have that AðxÞ½HðxÞ þ BðxÞ�AðxÞ is a posi-
tive definite matrix if and only if HðxÞ þ BðxÞ is a positive definite matrix.
For all d 2 Sn,

dT½HðxÞ þ BðxÞ�d ¼ dTHðxÞdþ
Xn
i¼1

ohðxÞ
oxi

t00i;pðyiÞ
½t0i;pðyiÞ�

2
d2i :

Let s0 ¼ min k0ðzÞ, where k0ðzÞ denotes the minimum eigenvalue of HðzÞ.
Suppose that s0 < 0, otherwise hðxÞ is convex already.
By (2.6) and (iii), (iv), we have that

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
�þ1ðp! þ1Þ; 8x 2 X; 8i 2 I:

Thus, for �s0
g0
> 0, there exists p00 > 0 such that for any p > p00,

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
>
�s0
g0

; 8x 2 X; 8i 2 I:

By (2.7) and (iii), (iv), we have that

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
��1ðp! þ1Þ; 8x 2 X; 8i 2 I:

Thus, for �s0
f0
> 0, there exists p000 > 0 such that for any p > p000,

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
< ��s0

f0
; 8x 2 X; 8i 2 I:

Let p0 ¼ maxfp00; p000g, for any p > p0, d 2 Sn and x 2 X, we have

dT½HðxÞ þ BðxÞ�d P s0 þ
Xn
i¼1

ohðxÞ
oxi

t00i;pðyiÞ
½t0i;pðyiÞ�

2
d2i

> s0 þ g0 �
s0
g0

� �X
i2I

d2i þ ð�f0Þ
s0
f0

X
i2I

d 2
i

¼ 0:

Thus HðxÞ þ BðxÞ is a positive definite matrix, i.e. AðxÞ½HðxÞ þ BðxÞ�AðxÞ
is a positive definite matrix when p > p0. Therefore, HpðyÞ is a positive
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definite matrix for all y 2 Yp when p > p0. That is, hpðyÞ is a convex func-
tion on any convex subset of Yp when p > p0. (

REMARK 2.1. By the proof of Theorem 2.1, we know that hpðyÞ is convex
if and only if HðxÞ þ BðxÞ is positive definite for any x 2 X. Thus, if we
can take proper p such that HðxÞ þ BðxÞ is positive definite, then hpðyÞ
must be a convex function on Yp. Furthermore, we need not to estimate
the minimum value of the minimum eigenvalue of HðzÞ for z 2 X, we just
need to take p large enough such that

o2hðxÞ
ox2i

þ ohðxÞ
oxi

t00i ðt�1i;p ðxiÞÞ
½t0iðt�1i;p ðxiÞÞ�

2
>

Xn

j¼1;j6¼1

o2hðxÞ
oxioxi

����
����; for any i¼ 1; . . . ;n; x 2 X:

Then, the matrix HðxÞ þ BðxÞ must be a positive definite matrix on X.

COROLLARY 2.1. Let

(i) hðxÞ be a twice continuously differentiable and strictly increasing func-
tion on X satisfying

ohðxÞ
oxi

P g0; 8x 2 X; 8i 2 f1; 2; . . . ; ng; (2:11Þ

(ii) ti;p; i ¼ 1; 2; . . . ; n, be strictly monotone functions satisfying

t0i;pðyiÞ 6¼ 0; 8yi 2 Xi; 8i 2 f1; . . . ; ng;

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
! þ1ðp! þ1Þ; 8x 2 X; 8i 2 f1; . . . ; ng; (2:12Þ

(iii) X be a compact set.
Then there exists a finite p1 > 0, such that hpðyÞ is a convex function on

any convex subset of Yp when p > p1.

COROLLARY 2.2. Let

(i) hðxÞ be a twice continuously differentiable and strictly decreasing func-
tion on X satisfying

ohðxÞ
oxi

O� f0; 8x 2 X; 8i 2 f1; 2; . . . ; ng: (2:13Þ

(ii) ti;p; i ¼ 1; 2; . . . ; n, be strictly monotone functions satisfying

t0i;pðyiÞ 6¼ 0; 8yi 2 Xi; 8i 2 f1; . . . ; ng;

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
! �1ðp! þ1Þ; 8x 2 X; 8i 2 f1; . . . ; ng: (2:14Þ

(iii) X be a compact set.
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Then there exists a finite p2 > 0, such that hpðyÞ is a convex function on
any convex subset of Yp when p > p2.

COROLLARY 2.3. Suppose that h and ti;p; i ¼ 1; . . . ; n, satisfy the condi-
tions of Theorem (2.1),

X ¼ fxjliOxiOui; i ¼ 1; . . . ; ng (2:15Þ
with 0 < li < ui <1; i ¼ 1; . . . ; n. Then there exists a finite p3 > 0 such that
hpðyÞ is a convex function on Yp when p > p3.

Proof. We only need to verify that Yp is a convex set. Let
J ¼ fjjti;pðyjÞ is strictly increasing on Xjg, J ¼ f1; 2; . . . ; ng=J. Thus
Yp ¼ fðy1; . . . ; ynÞjt�1j;p ðljÞOyjOt�1j;p ðujÞ; j 2 J and t�1j;p ðujÞOyjOt�1j;p ðljÞ; j 2 J.
Obviously, Yp is a convex compact set. (

COROLLARY 2.4. Suppose Tp is a convex and strictly increasing function
on a convex set Z0 including hðXÞ, h and t satisfy the conditions of Theorem
2.1, let

UpðyÞ ¼ TpðhðtpðyÞÞÞ: (2:16Þ
Then, UpðyÞ is a convex function on Yp.

Proof. By Theorem 2.1 and Theorem 6.9 ([12], pp. 154–155), we can obtain
it very easily. (

REMARK 2.2. If we set tpðyÞ ¼ 1
p tðyÞ, i.e. ti;pðyiÞ ¼ 1

p tiðyiÞ; i ¼ 1; . . . ; n,
where tiðyiÞ is a twice continuously differentiable and strictly monotone
functions satisfying

t00i ðt�1i;p ðxiÞÞ
½t0iðt�1i;p ðxiÞÞ�

2
Ps > 0; 8x 2 X;8i 2 f1; 2; . . . ; ng; (2:17Þ

and set TpðsÞ ¼ TðpsÞ;8s 2 R, where T is a strictly increasing convex func-
tion, then we obtain

UpðyÞ ¼ T phð1
p
tðyÞÞ

� �
(2:18Þ

which is exactly the transformation proposed in [10]. Obviously the trans-
formation tðyÞ satisfying the condition (2.17) must satisfy the condition
(2.12) in Corollary 2.1. In fact, let tpðyÞ ¼ 1

p tðyÞ, i.e. 8i 2 f1; 2;
. . . ; ng; ti;pðyiÞ ¼ 1

p tiðyiÞ, then

t0i;pðyiÞ ¼
1

p
t0iðyiÞ

t00i;pðyiÞ ¼
1

p
t00i ðyiÞ:
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If tðyÞ satisfies the condition (2.17), then we have that

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
¼ p

t00i ðt�1i;p ðxiÞÞ
½t0iðt�1i;p ðxiÞÞ�

2

Pps! þ1; ðp! þ1Þ;8x 2 X; 8i 2 f1; 2; . . . ; ng;
i.e tpðyÞ satisfies the condition (2.12) in Corollary 2.1.
Therefore the main result in [10] can be viewed as a special case of Cor-

ollary 2.1.

REMARK 2.3. If we set tpðyÞ ¼ y
1
p, i.e. ti;pðyiÞ ¼ y y

1
p

i , 8i 2 f1; 2; . . . ; ng and
set TpðsÞ ¼ sp where p > 0; s > 0;X be defined as in (2.15), moreover, with-
out loss of generality we assume that hðxÞ > 0; 8x 2 X, then we obtain

UpðyÞ ¼ ½hðy
1
pÞ�p; ð2:19Þ

which is exactly the transformation proposed in [7]. We observe that condi-
tion (iii) in Corollary 2.2 is satisfied for this special class of transformation,
thus the main result in [7] can be viewed as a special case of Corollary 2.2.

In fact, for each i 2 f1; . . . ; ng, since xi ¼ ti;pðyiÞ ¼ y
1
p

i , thus

Yp ¼ fy 2 Rnj0 < l
p
i OyiOu

p
i ; i ¼ 1; . . . ; ng;

t0i;pðyiÞ ¼
1

p
y

1
p�1
i 6¼ 0;8yi > 0; 8i 2 f1; 2; . . . ; ng

t00i;pðyiÞ ¼
1

p

1

p
� 1

� �
y

1
p�2
i ; 8i 2 f1; 2; . . . ; ng

and

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
¼ 1� p

xi
ðwhen p > 1Þ

P
1� p

li
! �1ðp! þ1Þ; 8x 2 X; i 2 f1; . . . ; ng:

REMARK 2.4. We can derive other transformations than those proposed
in [7] and [10] from (2.1) by constructing many specific function forms
which satisfy the conditions in Theorem 2.1. For example, if we take X as

in (2.15), then each of functions y
�1

p

i ;
1
p lnð1þ y

1
p

iÞ; 1p lnðlþ
p
yi
Þ; lnð1þ y

�1
p

i Þ;
� 1

p lnðyiÞ can be used as ti;pðyiÞ satisfying

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
! þ1ðp! þ1Þ;8x 2 X;

and each of the functions 1
p lnð1þ pyiÞ; 1p lnð1þ y

1
p

iÞ; y
1
p

i ; lnð1þ y
1
p

iÞ; 1p lnðyiÞ can
be used as ti;pðyiÞ satisfying
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t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2

and each of the functions s; sp; lnð1þ epsÞ;� lnð1� 1
p sÞ can be used as TpðsÞ

satisfying condition in Corollary 2.4 provided p is sufficiently large (sup-
pose hðxÞ > 0).
Similar to Theorem 2.1, we have the following concave transformation:

THEOREM 2.2. Suppose the condition (i) and (ii) are the same as (i) and
(ii) of Theorem 2.1. (iii) ti;p; i ¼ 1; . . . ; n are strictly monotone functions on X
satisfying:

t0i;pðyiÞ 6¼ 0; 8yi 2 Xi; 8i 2 f1; . . . ; ng (2:20Þ
t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
! �1ðp! þ1Þ; 8x 2 X; 8i 2 I (2:21Þ

t00i;pðt�1i;p ðxiÞÞ
½t0i;pðt�1i;p ðxiÞÞ�

2
! þ1ðp! þ1Þ; 8x 2 X; 8i 2 I (2:22Þ

(iv) X is a compact set.
Then there exists a finite p0 > 0 such that hpðyÞ is a concave function on

any convex subset of Yp when p > p0.

The proof of Theorem 2.2 is similar to the proof of Theorem 2.1, so it is
omitted.
Similarly, Theorem 2.2 has the corresponding corollaries and remarks

similar to those of Theorem 2.1. Here we do not enumerate them one by
one.
By Theorem 2.1 and Theorem 2.2, we conclude that the function hðxÞ

which is strictly increasing or decreasing with respect to xi for
i 2 f1; . . . ; ng can always be transformed into a convex or concave function
via the transformation (2.1). An important feature of the convexification
(concavification)transformation (2.1) is that the variable transform
y$ tpðyÞ is a 1–1 monotone mapping between Yp and X which is crucial
for the equivalence between problem (1.1) and the transformed one. These
equivalences will be established in Section 3.

3. Equivalence to Concave Minimization, Reverse Convex Programming or

D.C. Programming

In this section, we establish the equivalence between problem (1.1) and a
transformed minimization problems with a better structure. Consider the
following optimization problem which is a transformation of (1.1):
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min fpðyÞ ¼ fðtpðyÞÞ
s.t. gj;pðyÞ ¼ gjðtpðyÞÞObj; j ¼ 1; . . . ;m

y 2 Yp (3.1)

where tpðyÞ : YP ! X. The reference [10] pointed out the following conclu-
sion of equivalence between (1.1) and (3.1).

THEOREM 3.1. [10] Assume that tpðyÞ is an onto mapping with X ¼ hðYPÞ.
Then:
(i) y�p is a global optimal solution to ð3:1Þ if and only if x� ¼ tpðy�pÞ is a

global optimal solution to ð1:1Þ.
(ii) If t�1p exists and both tp and t�1p are continuous mappings, then y�p 2 Yp

is a local optimal solution to ð3:1Þ if and only if x� ¼ tpðy�pÞ is a local optimal
solution to (1.1).
Let g0ðxÞ ¼ fðxÞ. In the remainder of this section, we suppose that X is a

box defined by (2.15) and there exist two index sets I � f1; . . . ; ng and
J � f0; 1; . . . ;mg and g0 > 0 such that

for any j 2 J

ogjðxÞ
oxi

Pg0; 8i 2 I; x 2 X (3:2Þ

ogjðxÞ
oxi

O� g0; 8i 2 I ¼ f1; . . . ; ngnI; x 2 X (3:3Þ

for any j 2 I

ogjðxÞ
oxi

O� g0 8i 2 I; x 2 X ð3:4Þ

ogjðxÞ
oxi

Pg0; 8i 2 I ¼ f1; . . . ; ngnI; x 2 X: (3:5Þ

And without loss of generality, we suppose that there exists at least a
gjðxÞ; j 2 f1; . . . ;mg such that the monotone properties of gjðxÞ and fðxÞ
are different, i.e., we must have that J 6¼ ; and J 6¼ ;. Thus it is enough to
discuss the following three cases:

(1) J ¼ f0g and J ¼ f1; . . . ;mg. If we take tpðyÞ to satisfy the condition
(iii) of Theorem 2.1, then, by Theorem 2.1, we know that the func-
tion fpðyÞ is convex on Yp and by Theorem 2.2, functions gj;pðyÞ,
j ¼ 1; . . . ;m, are concave on Yp when p is large enough. Thus, the
problem (3.1) is a reverse convex programming problem when p is
large enough. If we take tpðyÞ to satisfy the condition (iii) of Theo-
rem 2.2, then, by Theorem 2.2, we know that the function fpðyÞ is
concave on Yp and by Theorem 2.1, functions gj;pðyÞ; j ¼ 1; . . . ;m,
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are convex on Yp when p is large enough. Thus, the problem (3.1) is
a concave minimization problem when p is sufficiently large.

(2) J ¼ f1; . . . ;mg and J ¼ f0g. If we take tpðyÞ to satisfy the condition
(iii) of Theorem 2.1, then, by Theorem 2.1, we know that the func-
tions gj;pðyÞ, j ¼ 1; . . . ;m, are convex on Yp and by Theorem 2.2,
function fpðyÞ is concave on Yp when p is large enough. Thus, the
problem (3.1) is a concave minimization problem when p is large
enough. If we take tpðyÞ to satisfy the condition (iii) of Theorem 2.2,
then, by Theorem 2.2, we know that the function gj;pðyÞ,
j ¼ 1; . . . ;m, are concave on Yp and by Theorem 2.1, function fpðyÞ
is convex on Yp when p is large enough. Thus, the problem (3.1) is a
reverse convex programming problem when p is sufficiently large.

(3) J 6¼ f0g and J 6¼ f0g. Without loss of generality, we suppose that
0 2 J. If we take tpðyÞ to satisfy the condition (iii) of Theorem 2.1,
then, by Theorem 2.1, we know that the function fpðyÞ is convex on
Yp and by Theorem 2.2, functions gj;pðyÞ, j 2 J, are convex, gj;pðyÞ,
j 2 J, are concave on Yp when p is large enough. Thus, the problem
(3.1) is a canonical D.C. programming problem when p is large
enough.

By using the existing algorithms for concave minimization, reverse con-
vex programming and canonical D.C. programming (see [4, 11]), problem
(3.1) can be solved, i.e. problem (1.1) can be solved successfully.

4. An Illustrative Example

In this section, one illustrative example is presented to show how a prob-
lem in the form of (1.1) can be transformed into an equivalent concave
minimization problem.

EXAMPLE 4.1.

min fðxÞ ¼ 20x41 � 30x62 þ sinð5x1Þ sinð5x2Þ
s.t. gðxÞ ¼ �10 expð3x1Þ þ 10 expð3x2Þ � cosð5x1Þ cosð5x2ÞO0;

x 2 X ¼ fxj1Ox1O2; 1Ox2O2g: (4:1Þ
Figures 1 and 2 give the behavior of function fðxÞ and gðxÞ on X. From

Figures 1 and 2, we see that the function fðxÞ and gðxÞ are neither convex
nor concave on X. In fact, we have that

ofðxÞ
ox1

¼ 80x31 þ 5 cosð5x1Þ sinð5x2ÞP80� 5 ¼ 75;

ofðxÞ
ox2

¼ �18x52 þ 5 sinð5x1Þ cosð5x2ÞO�18þ 5 ¼ �13;

and
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Figure 1. The behavior of function fðxÞ on X.
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Figure 2. The behavior of function gðxÞ on X.
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ogðxÞ
ox1

¼ �30 expð3x1Þ þ 5 sinð5x1Þ cosð5x2ÞO� 30 expð3Þ þ 5 < 0;

ogðxÞ
ox2

¼ 30 expð3x2Þ þ 5 cosð5x1Þ sinð5x2ÞP30 expð3Þ � 5 > 0;

for any x 2 X.
And the Hessians of fðxÞ and gðxÞ at x 2 X are the following matrices,

respectively.

HðxÞ ¼ 240x21 � 25 sinð5x1Þ sinð5x2Þ 25 cosð5xÞ cosð5x2Þ
25 cosð5xÞ cosð5x2Þ �90x42 � 25 sinð5x1Þ sinð5x2Þ

 !

and

GðxÞ¼ �90expð3x1Þþ25cosð5x1Þcosð5x2Þ �25sinð5x1Þsinð5x2Þ
�25sinð5x1Þsinð5x2Þ 90expð3x2Þþ25cosð5x1Þcosð5x2Þ

� �
:

Obviously, they all are neither convex nor concave for any x 2 X.
By Theorem 2.2 and 2.1, if can take x ¼ tpðyÞ such that HðxÞ þ B1ðxÞ is

negative definite and GðxÞ þ B2ðxÞ is positive definite, then the original
problem (4.1) can be converted into an equivalent concave minimization
problem, where

B1ðxÞ ¼

ofðxÞ
ox1

t00
1;p1
ðy1Þ

½t0
1;p1
ðy1Þ�2

0

0 ofðxÞ
ox2

t00
2;p2
ðy2Þ

½t0
2;p2
ðy2Þ�2

0
BB@

1
CCA

and

B2ðxÞ ¼

ogðxÞ
ox1

t00
1;p1
ðy1Þ

½t0
1;p1
ðy1Þ�2

0

0 ogðxÞ
ox2

t00
2;p2
ðy2Þ

½t0
2;p2
ðy2Þ�2

0
BB@

1
CCA:

Here if we take x1 ¼ t1;pðy1Þ ¼ 1
p lnðy1Þ and take x2 ¼ t2;pðy2Þ ¼ y2, then

the original problem (4.1) can be converted into the following problem:

min fpðyÞ ¼ 20
1

p
lnðy1Þ

� �4
�3y62 þ sin

5

p
lnðy1Þ

� �
sinð5y2Þ

s.t. gpðyÞ ¼ �10y
3
p

1 þ 10 expð3y2Þ � cos
5

p
lnðy1Þ

� �
cosð5y2ÞO0;

y 2 Yp ¼ fepOy1Oe2p; 1Oy2O2g:

ð4:2Þ

We can easily verify that when pP4, HðzÞ þ B1ðzÞ is negative definite
and GðzÞ þ B2ðzÞ is positive definite for any z 2 Yp, i.e., the function fpðyÞ
is a concave function and gpðyÞ is a convex function on Yp (by Remark
2.1). Thus, the problem (4.2) is a concave minimization problem when
pP4.
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The figures 3 and 4 give the behavior of fpðyÞ and gpðyÞ on Yp when
p ¼ 4.
From Figure 3 and 4, we see that the function fpðyÞ is concave and gpðyÞ

is convex on Yp. Therefore, the problem (4.1) has been converted into an
equivalent concave minimization problem (4.2) by the above given trans-
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Figure 3. The behavior of function fpðyÞ ðp ¼ 4Þ on X.
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Figure 4. The behavior of function gpðyÞ ðp ¼ 4Þ on X.
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formation. Then by the existing algorithms for concave minimization, such
as outer approximation method, etc., proposed in [2, 4, 11], we can obtain
a global optimization solution of problem (4.1).

5. Conclusions

In this paper, we have given a general convexification and concavification
transformation method to convert a general global optimization with cer-
tain monotone properties into an equivalent concave minimization, reverse
convex programming problem or D.C. programming problem. The convex-
ification and concavification transformation methods in [7] and [10]
become special cases of the general convexification and concavification
transformation proposed in this paper. Therefore, we can take more proper
transformations to convert a general global optimization problem into an
equivalent better structured problem. Then, we can obtain a global solu-
tion by solving the converted problem with the existing algorithms for
these better structured problems.
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